Advances in Studies and Applications of Centroidal Voronoi Tessellations
نویسندگان
چکیده
Centroidal Voronoi tessellations (CVTs) have become a useful tool in many applications ranging from geometric modeling, image and data analysis, and numerical partial differential equations, to problems in physics, astrophysics, chemistry, and biology. In this paper, we briefly review the CVT concept and a few of its generalizations and well-known properties. We then present an overview of recent advances in both mathematical and computational studies and in practical applications of CVTs. Whenever possible, we point out some outstanding issues that still need investigating. AMS subject classifications: 5202, 52B55, 62H30, 6502, 65D30, 65U05, 65Y25, 68U05, 68U10
منابع مشابه
Ideal Point Distributions, Best Mode Selections and Optimal Spatial Partitions via Centroidal Voronoi Tessellations
There are many new applications of the centroidal Voronoi tessellations that come to life in recent years, along with more mathematical understandings and new algorithmic advances in their efficient computation. Some examples are presented in this paper as an illustration with an emphasis on the construction of ideal point distributions, best mode selections and optimal spatial partitions.
متن کاملCentroidal Voronoi Tessellations: Applications and Algorithms
A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods f...
متن کاملCentroidal Voronoi Tessellations : Applications and Algorithms ∗ Qiang Du
A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods f...
متن کاملParallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations
A new algorithm, featuring overlapping domain decompositions, for the parallel construction of Delaunay and Voronoi tessellations is developed. Overlapping allows for the seamless stitching of the partial pieces of the global Delaunay tessellations constructed by individual processors. The algorithm is then modified, by the addition of stereographic projections, to handle the parallel construct...
متن کاملConvergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations
Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a bounded geometric domain such that the generating points of the tessellations are also the centroids (mass centers) of the corresponding Voronoi regions with respect to a given density function. Centroidal Voronoi tessellations may also be defined in more abstract and more general settings. Due to the natural optimization pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009